dc.contributor.advisor | Ruonan Han. | en_US |
dc.contributor.author | Zhang, Guo (Electrical and computer science engineer) Massachusetts Institute of Technology | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2018-03-02T22:20:48Z | |
dc.date.available | 2018-03-02T22:20:48Z | |
dc.date.copyright | 2017 | en_US |
dc.date.issued | 2017 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/113963 | |
dc.description | Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 47-49). | en_US |
dc.description.abstract | The topic covered by this thesis is the project of designing a terahertz imager chip on nowadays commercialized mature silicon platform. In the project, we developed the design method of a multi-functional heterodyne pixel and a scalable array architecture. The pixel is a compact electromagnetic structure simultaneously performs voltage-controlled 140 GHz local oscillation, 280-GHz-signal receiving, sub-harmonic mixing, and intermediate frequency (IF) signal extraction. Each pixel consumes 10 mW power and achieves a sensitivity of 2.9 pW in simulation. The local oscillator (LO) of the pixel is phase coupled with its neighbors; the whole oscillator array is then stabilized by an on-chip THz phase-locked loop. This architecture gives excellent array scalability. First, the LO power is evenly distributed and does not degrade in a larger array scale as a normal centralized array does. Second, the phase noise of the coupled LO network improves linearly with the array size. The simulated phase noise at 1-MHz frequency offset is -90 dBc/Hz for an 8 x 8 array and -101 dBc/Hz for a 32 x 32 array. This chip is capable of digital beam steering, too. The first version of the chip prototype with a 10 x 10 array is fabricated using a 130-nm SiGe BiCMOS process and tested. | en_US |
dc.description.statementofresponsibility | by Guo Zhang. | en_US |
dc.format.extent | 49 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Terahertz beam-steering imager using a scalable 2D-coupled architecture and multi- functional heterodyne pixels | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.identifier.oclc | 1023498531 | en_US |