MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Active flows and networks

Author(s)
Forrow, Aden
Thumbnail
DownloadFull printable version (14.34Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Jörn Dunkel.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Coherent, large scale dynamics in many nonequilibrium physical, biological, or information transport networks are driven by small-scale local energy input. In the first part of this thesis, we introduce and explore two analytically tractable nonlinear models for such active flow networks, drawing motivation from recent microfluidic experiments on bacterial and other microbial suspensions. In contrast to equipartition with thermal driving, we find that active friction selects discrete states with only a limited number of modes excited at distinct fixed amplitudes. When the active transport network is incompressible, these modes are cycles with constant flow; when it is compressible, they are oscillatory. As is common in such network dynamical systems, the spectrum of the underlying graph Laplacian plays a key role in controlling the flow. Spectral graph theory has traditionally prioritized analyzing Laplacians of unweighted networks with specified adjacency properties. For the second part of the thesis, we introduce a complementary framework, providing a mathematically rigorous positively weighted graph construction that exactly realizes any desired spectrum. We illustrate the broad applicability of this approach by showing how designer spectra can be used to control the dynamics of three archetypal physical systems. Specifically, we demonstrate that a strategically placed gap induces weak chimera states in Kuramoto-type oscillator networks, tunes or suppresses pattern formation in a generic Swift-Hohenberg model, and leads to persistent localization in a discrete Gross-Pitaevskii quantum network.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 117-128).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/117877
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.