Show simple item record

dc.contributor.advisorJörn Dunkel.en_US
dc.contributor.authorForrow, Adenen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mathematics.en_US
dc.date.accessioned2018-09-17T15:48:11Z
dc.date.available2018-09-17T15:48:11Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/117877
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 117-128).en_US
dc.description.abstractCoherent, large scale dynamics in many nonequilibrium physical, biological, or information transport networks are driven by small-scale local energy input. In the first part of this thesis, we introduce and explore two analytically tractable nonlinear models for such active flow networks, drawing motivation from recent microfluidic experiments on bacterial and other microbial suspensions. In contrast to equipartition with thermal driving, we find that active friction selects discrete states with only a limited number of modes excited at distinct fixed amplitudes. When the active transport network is incompressible, these modes are cycles with constant flow; when it is compressible, they are oscillatory. As is common in such network dynamical systems, the spectrum of the underlying graph Laplacian plays a key role in controlling the flow. Spectral graph theory has traditionally prioritized analyzing Laplacians of unweighted networks with specified adjacency properties. For the second part of the thesis, we introduce a complementary framework, providing a mathematically rigorous positively weighted graph construction that exactly realizes any desired spectrum. We illustrate the broad applicability of this approach by showing how designer spectra can be used to control the dynamics of three archetypal physical systems. Specifically, we demonstrate that a strategically placed gap induces weak chimera states in Kuramoto-type oscillator networks, tunes or suppresses pattern formation in a generic Swift-Hohenberg model, and leads to persistent localization in a discrete Gross-Pitaevskii quantum network.en_US
dc.description.statementofresponsibilityby Aden Forrow.en_US
dc.format.extent128 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMathematics.en_US
dc.titleActive flows and networksen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.oclc1051190431en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record