Automation solutions for E-commerce multi-item packing
Author(s)
Walker, Andrew (Andrew Millington)
DownloadFull printable version (8.938Mb)
Other Contributors
Leaders for Global Operations Program.
Advisor
Nikolaos Trichakis and Maria Yang.
Terms of use
Metadata
Show full item recordAbstract
As Amazon continues to experience a rapid growth in its e-commerce business, fulfillment efficiency needs to through safe implementation of advanced technology to create a better customer experience. Amazon has heavily invested in automating its outbound product sortation process that merges picked items but has yet to develop automation for multi-item packing. Individual item manipulation has been proven very challenging to automate due to the over 500 million unique products offered. This thesis proposes a container manipulation solution that integrates industrial robotics and other equipment with upstream sortation technology to automate the packing process. A physical prototype was built to test the concept and measure proficiency in critical quality metrics such as item accuracy, product damage, and packing density/orientation. Additionally, an operational simulation for the system was developed to determine the optimal capacity sizing for the integrated sortation and packing system. Lastly, sensitivity analysis on a financial model was performed to optimize for the net present value (NPV) and payback period. After a series of controlled experiments and process improvements, the prototype produced promising results, given the rudimentary nature of the prototype. The system generated item accuracy defects at 2%, product damage defects at 2% and packing orientation defects at 17%. While these results are not adequate to be used in live operation, a development path to acceptable performance appears attainable. Furthermore, implementation of the technology would generate approximately and $100M in NPV across the global fulfillment network.
Description
Thesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, in conjunction with the Leaders for Global Operations Program at MIT, 2018. Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, in conjunction with the Leaders for Global Operations Program at MIT, 2018. Cataloged from PDF version of thesis. Includes bibliographical references (page 49).
Date issued
2018Department
Leaders for Global Operations Program at MIT; Massachusetts Institute of Technology. Department of Mechanical Engineering; Sloan School of ManagementPublisher
Massachusetts Institute of Technology
Keywords
Sloan School of Management., Mechanical Engineering., Leaders for Global Operations Program.