MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust end-to-end learning for autonomous vehicles

Author(s)
Amini, Alexander Andre
Thumbnail
DownloadFull printable version (6.196Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Daniela Rus.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Deep learning has been successfully applied to "end-to-end" learning of the autonomous driving task, where a deep neural network learns to predict steering control commands from camera data input. While these works support reactionary control, the representation learned is not usable for higher-level decision making required for autonomous navigation. This thesis tackles the problem of learning a representation to predict a continuous control probability distribution, and thus steering control options and bounds for those options, which can be used for autonomous navigation. Each mode in the learned distribution encodes a possible macro-action that the system could execute at that instant, and the covariances of the modes place bounds on safe steering control values. Our approach has the added advantage of being trained solely on unlabeled data collected from inexpensive cameras. In addition to uncertainty estimates computed directly by our model, we add robustness by developing a novel stochastic dropout sampling technique for estimating the inherent confidence of the model's output. We install the relevant processing hardware pipeline on-board a full-scale autonomous vehicle and integrate our learning algorithms for real-time control inference. Finally, we evaluate our models on a challenging dataset containing a wide variety of driving conditions, and show that the algorithms developed as part of this thesis are capable of successfully controlling the vehicle on real roads and even under a parallel autonomy paradigm wherein control is shared between human and robot.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 59-64).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/118031
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.