Show simple item record

dc.contributor.advisorDaniela Rus.en_US
dc.contributor.authorAmini, Alexander Andreen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2018-09-17T15:54:34Z
dc.date.available2018-09-17T15:54:34Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/118031
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 59-64).en_US
dc.description.abstractDeep learning has been successfully applied to "end-to-end" learning of the autonomous driving task, where a deep neural network learns to predict steering control commands from camera data input. While these works support reactionary control, the representation learned is not usable for higher-level decision making required for autonomous navigation. This thesis tackles the problem of learning a representation to predict a continuous control probability distribution, and thus steering control options and bounds for those options, which can be used for autonomous navigation. Each mode in the learned distribution encodes a possible macro-action that the system could execute at that instant, and the covariances of the modes place bounds on safe steering control values. Our approach has the added advantage of being trained solely on unlabeled data collected from inexpensive cameras. In addition to uncertainty estimates computed directly by our model, we add robustness by developing a novel stochastic dropout sampling technique for estimating the inherent confidence of the model's output. We install the relevant processing hardware pipeline on-board a full-scale autonomous vehicle and integrate our learning algorithms for real-time control inference. Finally, we evaluate our models on a challenging dataset containing a wide variety of driving conditions, and show that the algorithms developed as part of this thesis are capable of successfully controlling the vehicle on real roads and even under a parallel autonomy paradigm wherein control is shared between human and robot.en_US
dc.description.statementofresponsibilityby Alexander Andre Amini.en_US
dc.format.extent64 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleRobust end-to-end learning for autonomous vehiclesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc1051458698en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record