Show simple item record

dc.contributor.advisorDomitilla Del Vecchio.en_US
dc.contributor.authorHerath, Narmada Kumarien_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2018-09-17T15:56:45Z
dc.date.available2018-09-17T15:56:45Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/118083
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 177-183).en_US
dc.description.abstractBiomolecular systems often involve reactions that take place on different time-scales, giving rise to 'slow' and 'fast' system variables. This property is widely used in the analysis of systems to obtain dynamical models with reduced dimensions. In deterministic systems, methods to obtain such reduced-order models are well defined by the singular perturbation or averaging techniques. However, model reduction of stochastic systems remains an ongoing area of research. In particular, existing model reduction methods for stochastic models of biomolecular systems lack rigorous error quantifications between the full and reduced dynamics. Furthermore, they only provide approximations for the slow variable dynamics, making the application of such methods to biomolecular systems difficult since the variables of interest are typically mixed (i.e., they encompass both fast and slow variables). In this thesis, we consider biomolecular systems modeled using the chemical Langevin equation (CLE) and the Linear Noise Approximation (LNA). Specifically, we consider biomolecular systems with linear propensity functions modeled by the CLE and systems with arbitrary propensity functions modeled by the LNA. For these systems, we obtain reduced-order models that approximate both the slow and fast variables under time-scale separation conditions. In particular, with suitable assumptions, we prove that the moments of the reduced-order models converge to those of the full systems as the time-scale separation becomes large. Our results further provide a rigorous justification for the accuracy of the stochastic total quasi-steady state approximation (tQSSA). We then consider two applications of these reduced-order models. In the first application, we analyze the trade-offs between modularity and signal noise in biomolecular networks. In the second application, we consider the application of the reduced-order LNA developed in this work to obtain reduced-order stochastic models for gene-regulatory networks.en_US
dc.description.statementofresponsibilityby Narmada Kumari Herath.en_US
dc.format.extent183 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleModel order reduction for stochastic models of biomolecular systems with time-scale separationen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc1052123892en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record