MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

SQL-ACT : content-based and history-aware input prediction for non-trivial SQL queries

Author(s)
Manzi, Eric R
Thumbnail
DownloadFull printable version (3.482Mb)
Alternative title
Content-based and history-aware input prediction for non-trivial SQL queries
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Samuel R. Madden.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis presents SqlAct, a SQL auto-completion system that uses content-based and history-aware input prediction to assist in the process of composing non-trivial queries. By offering the most relevant suggestions to complete the partially typed query first at the word-level and then at the statement-level, SqlAct hopes to help both novice and expert SQL developers to increase their productivity. Two approaches are explored: word-level suggestions are optimized based on the database's schema and content statistics, and statement-level suggestions that rely on Long Short-term Memory (LSTM) Recurrent Neural Networks language models trained on historical queries. The word-level model is integrated in a responsive command-line interface database client which is evaluated quantitatively and qualitatively. Results shows SqlAct provides a highly-responsive interface that makes high quality suggestions to complete the currently typed query. Possible directions for integration with the word-level model in the command-line tool are explored as well as the planned evaluation techniques.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 79-81).
 
Date issued
2017
URI
http://hdl.handle.net/1721.1/119534
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.