| dc.contributor.advisor | Samuel R. Madden. | en_US |
| dc.contributor.author | Manzi, Eric R | en_US |
| dc.contributor.other | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. | en_US |
| dc.date.accessioned | 2018-12-11T20:39:07Z | |
| dc.date.available | 2018-12-11T20:39:07Z | |
| dc.date.copyright | 2017 | en_US |
| dc.date.issued | 2017 | en_US |
| dc.identifier.uri | http://hdl.handle.net/1721.1/119534 | |
| dc.description | Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017. | en_US |
| dc.description | This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. | en_US |
| dc.description | Cataloged from student-submitted PDF version of thesis. | en_US |
| dc.description | Includes bibliographical references (pages 79-81). | en_US |
| dc.description.abstract | This thesis presents SqlAct, a SQL auto-completion system that uses content-based and history-aware input prediction to assist in the process of composing non-trivial queries. By offering the most relevant suggestions to complete the partially typed query first at the word-level and then at the statement-level, SqlAct hopes to help both novice and expert SQL developers to increase their productivity. Two approaches are explored: word-level suggestions are optimized based on the database's schema and content statistics, and statement-level suggestions that rely on Long Short-term Memory (LSTM) Recurrent Neural Networks language models trained on historical queries. The word-level model is integrated in a responsive command-line interface database client which is evaluated quantitatively and qualitatively. Results shows SqlAct provides a highly-responsive interface that makes high quality suggestions to complete the currently typed query. Possible directions for integration with the word-level model in the command-line tool are explored as well as the planned evaluation techniques. | en_US |
| dc.description.statementofresponsibility | by Eric R. Manzi. | en_US |
| dc.format.extent | 81 pages | en_US |
| dc.language.iso | eng | en_US |
| dc.publisher | Massachusetts Institute of Technology | en_US |
| dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
| dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
| dc.subject | Electrical Engineering and Computer Science. | en_US |
| dc.title | SQL-ACT : content-based and history-aware input prediction for non-trivial SQL queries | en_US |
| dc.title.alternative | Content-based and history-aware input prediction for non-trivial SQL queries | en_US |
| dc.type | Thesis | en_US |
| dc.description.degree | M. Eng. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
| dc.identifier.oclc | 1066742369 | en_US |