MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Non-line-of-sight imaging using data-driven approaches

Author(s)
Tancik, Matthew
Thumbnail
DownloadFull printable version (33.33Mb)
Alternative title
NLOS imaging using data-driven approaches
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Ramesh Raskar.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Non-line-of-sight (NLOS) imaging is desirable for its many potential applications such as detecting a vehicle occluded by a building's corner or imaging through fog. Traditional NLOS imaging techniques solve an inverse problem and are limited by computational complexity and forward model accuracy. This thesis proposes the application of data-driven techniques to NLOS imaging to leverage the convolutional neural network's ability to learn invariants to scene variations. We demonstrate the classification of an object hidden behind a scattering media along with the localization and classification of an object occluded by a corner. In addition we demonstrate the use of generative neural networks to construct images from viewpoints that extend the original camera's field of view.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 63-69).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119568
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.