dc.contributor.advisor | Ramesh Raskar. | en_US |
dc.contributor.author | Tancik, Matthew | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2018-12-11T20:40:29Z | |
dc.date.available | 2018-12-11T20:40:29Z | |
dc.date.copyright | 2018 | en_US |
dc.date.issued | 2018 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/119568 | |
dc.description | Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018. | en_US |
dc.description | This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. | en_US |
dc.description | Cataloged from student-submitted PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (pages 63-69). | en_US |
dc.description.abstract | Non-line-of-sight (NLOS) imaging is desirable for its many potential applications such as detecting a vehicle occluded by a building's corner or imaging through fog. Traditional NLOS imaging techniques solve an inverse problem and are limited by computational complexity and forward model accuracy. This thesis proposes the application of data-driven techniques to NLOS imaging to leverage the convolutional neural network's ability to learn invariants to scene variations. We demonstrate the classification of an object hidden behind a scattering media along with the localization and classification of an object occluded by a corner. In addition we demonstrate the use of generative neural networks to construct images from viewpoints that extend the original camera's field of view. | en_US |
dc.description.statementofresponsibility | by Matthew Tancik. | en_US |
dc.format.extent | 69 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Non-line-of-sight imaging using data-driven approaches | en_US |
dc.title.alternative | NLOS imaging using data-driven approaches | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M. Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 1076274978 | en_US |