MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Representation learning for non-sequential data

Author(s)
Parvathala, Rajeev (Rajeev Krishna)
Thumbnail
DownloadFull printable version (817.1Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Suvrit Sra.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we design and implement new models to learn representations for sets and graphs. Typically, data collections in machine learning problems are structured as arrays or sequences, with sequential relationships between successive elements. Sets and graphs both break this common mold of data collections that have been extensively studied in the machine learning community. First, we formulate a new method for performing diverse subset selection using a neural set function approximation method. This method relies on the deep sets idea, which says that any set function s(X) has a universal approximator of the form f([sigma]x[xi]X [phi](x)). Second, we design a new variational autoencoding model for highly structured, sparse graphs, such as chemical molecules. This method uses the graphon, a probabilistic graphical model from mathematics, as inspiration for the decoder. Furthermore, an adversary is employed to force the distribution of vertex encodings to follow a target distribution, so that new graphs can be generated by sampling from this target distribution. Finally, we develop a new framework for performing encoding of graphs in a hierarchical manner. This approach partitions an input graph into multiple connected subgraphs, and creates a new graph where each node represents one such subgraph. This allows the model to learn a higher level representation for graphs, and increases robustness of graphical encoding to varying graph input sizes.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 85-90).
 
Date issued
2018
URI
http://hdl.handle.net/1721.1/119581
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.