Show simple item record

dc.contributor.advisorSuvrit Sra.en_US
dc.contributor.authorParvathala, Rajeev (Rajeev Krishna)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2018-12-11T20:40:57Z
dc.date.available2018-12-11T20:40:57Z
dc.date.copyright2018en_US
dc.date.issued2018en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/119581
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 85-90).en_US
dc.description.abstractIn this thesis, we design and implement new models to learn representations for sets and graphs. Typically, data collections in machine learning problems are structured as arrays or sequences, with sequential relationships between successive elements. Sets and graphs both break this common mold of data collections that have been extensively studied in the machine learning community. First, we formulate a new method for performing diverse subset selection using a neural set function approximation method. This method relies on the deep sets idea, which says that any set function s(X) has a universal approximator of the form f([sigma]x[xi]X [phi](x)). Second, we design a new variational autoencoding model for highly structured, sparse graphs, such as chemical molecules. This method uses the graphon, a probabilistic graphical model from mathematics, as inspiration for the decoder. Furthermore, an adversary is employed to force the distribution of vertex encodings to follow a target distribution, so that new graphs can be generated by sampling from this target distribution. Finally, we develop a new framework for performing encoding of graphs in a hierarchical manner. This approach partitions an input graph into multiple connected subgraphs, and creates a new graph where each node represents one such subgraph. This allows the model to learn a higher level representation for graphs, and increases robustness of graphical encoding to varying graph input sizes.en_US
dc.description.statementofresponsibilityby Rajeev Parvathala.en_US
dc.format.extent90 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleRepresentation learning for non-sequential dataen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc1076359928en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record