MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning of probabilistic transition models for robotic actions via templates

Author(s)
Xia, Victoria(Victoria F.)
Thumbnail
Download1098214664-MIT.pdf (1.349Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Leslie Pack Kaelbling.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this work we present templates as an approach for learning probabilistic transition models for actions. By constructing templates via a greedy procedure for building up lists of deictic references that select relevant objects to pass to a predictor, we learn compact representations for a transition model whose training time and performance do not suffer from the presence of additional objects in more complex scenes. We present various algorithms for simultaneously separating training data into corresponding templates and learning template parameters, through the use of clustering-based approaches for initial assignment of samples to templates, followed by EM-like methods to further separate the data and train templates. We evaluate templates on variants of a simulated, 3D table-top pushing task involving stacks of objects. In comparing our approach to a baseline that considers all objects in the scene, we find that the templates approach is more data-efficient in terms of impact of number of training samples on performance.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 71-72).
 
Date issued
2018
URI
https://hdl.handle.net/1721.1/121497
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.