Show simple item record

dc.contributor.advisorYet-Ming Chiang.en_US
dc.contributor.authorEiler, Stephanie L.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2019-09-16T16:49:28Z
dc.date.available2019-09-16T16:49:28Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/122081
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: S.B., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2019en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 45-46).en_US
dc.description.abstractResearch towards the implementation of solid state electrolyte in lithium ion batteries is necessary to increase the energy density of such devices. This technology is imperative for the adoption of sustainable technology such as electric vehicles. The study of antiperovskites is vital for success of solid state electrolyte. Antiperovskites have been shown to have high ionic conductivities in literature, making it an attractive area of study. Single crystals of this structure are necessary to fully identify the mechanism of ion conduction in antiperovskite. X-ray photon correlation spectroscopy on a single crystal would provide clear data that could help determine the mobility of various defects through the antiperovskite lattice. Characterization of defect mobility would allow for the better design of antiperovskites as a solid state electrolyte by providing parameters for how the material can be altered for higher ionic conductivity.en_US
dc.description.abstractExperiments show that Li₂OHCl is an antiperovskite possibly capable of congruent melting, making it a possible candidate for single crystal growth through the Bridgman method. With this rational, the PARADIM Bulk Crystal Growth Facilities at Johns Hopkins University were utilized to attempt this type of crystal growth. Additional crystal growth experiments were conducted by simply slowly cooling the material in box furnaces with the notion that this would promote large grain growth. Samples created using these methods were examined using optical microscopy and Laue diffraction. Crystals grown in PARADIM Bridgman furnaces were shown to have some grains that are roughly two mm across. From these attempts at crystal growth, recommendations for improved Li₂OHCl crystal growth have been identified. Phase transformations in the material presented clear challenges in crystal growth by offering an opportunity for twinning to occur in the crystal as it cooled.en_US
dc.description.abstractIn addition to this, the volume change during solidification and the thermal coefficient of expansion was such that very slow cooling rates would be necessary for single crystal growth.en_US
dc.description.statementofresponsibilityby Stephanie L. Eiler.en_US
dc.format.extent46 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleAntiperovskite crystal growthen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.identifier.oclc1117775531en_US
dc.description.collectionS.B. Massachusetts Institute of Technology, Department of Materials Science and Engineeringen_US
dspace.imported2019-09-16T16:49:25Zen_US
mit.thesis.degreeBacheloren_US
mit.thesis.departmentMatScien_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record