MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and construction of a propeller open water testing apparatus and testing of a stereolithography 3D printed model propeller

Author(s)
Hentschel, William R.(William Ryan)
Thumbnail
Download1117713998-MIT.pdf (9.179Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Alexandra Techet.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis describes the design and construction of a propeller open water testing apparatus for educational and experimental use at MIT. This test apparatus was built as an inexpensive alternative to conducted in-house model scale marine propeller testing. A complimentary study was conducted to explore the process of manufacturing a model propeller using additive manufacturing. A propeller open water test apparatus, commonly referred to as a test boat, is used to measure the performance of marine propellers in uniform flow. The test boats performance was validated using a Wageningen B-series aluminum propeller as a benchmark. The test boat measured the open water performance of this benchmark within a small percentage of error. The practicality of using additive manufacturing to produce a model propeller was explored by manufacturing and testing a 3D printed replica of the benchmark propeller. The replica propeller was manufactured using a benchtop stereolithography 3D printer. The open water characteristics of the replica were measured and compared to the benchmark propeller. Results of this testing revealed some limitations of 3D printed model propellers, such as size constraints and imprecision of propeller blade geometry. This research has provided MIT students with an inexpensive method to conduct preliminary marine propeller testing and offers in-sight into the use of additively manufactured model propellers.
Description
Thesis: Nav. E., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019
 
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (page 85).
 
Date issued
2019
2019
URI
https://hdl.handle.net/1721.1/122139
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.