MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient matrix-free implementation and automated verification of hybridizable discontinuous Galerkin finite element methods

Author(s)
Foucart, Corbin.
Thumbnail
Download1117714609-MIT.pdf (15.26Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Pierre F.J. Lermusiaux.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This work focuses on developing efficient and robust implementation methods for hybridizable discontinuous Galerkin (HDG) schemes for fluid and ocean dynamics. In the first part, we compare choices in weak formulations and their numerical consequences. We address details in making the leap from the mathematical formulation to the implementation, including the different spaces and mappings, discretization of the integral operators, boundary conditions, and assembly of the linear systems. We provide a flexible mapping procedure amenable to both quadrature-free and quadrature-based discretizations, and compare the accuracy of the two on different problem geometries. We verify the quadrature-free approach, demonstrating that optimal orders of convergence can be obtained, even on non-affine and curvilinear geometries. The second part of the work investigates the scalability of HDG schemes, identifying memory and time-to-solution bottlenecks. The form of the quadrature-free integral operators is exploited to develop a novel and efficient matrix-free approach to solving the global linear system that arises from HDG discretizations. Additional manipulations to improve numerical robustness are discussed. To mitigate the complexity of the implementation, we provide an automated and computationally efficient verification procedure for the HDG methodologies discussed, using a hierarchical approach to provide diagnostic information and isolate problems. Finally, challenges related to the effective visualization of high-order, discontinuous HDG-FEM data for fluid and ocean applications are illustrated and strategies are provided to address them.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 93-99).
 
Date issued
2019
URI
https://dspace.mit.edu/handle/1721.1/122147
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.