Show simple item record

dc.contributor.advisorChristopher Knittel and Marija Ilic.en_US
dc.contributor.authorDavuluri, Sruthi.en_US
dc.contributor.otherMassachusetts Institute of Technology. Institute for Data, Systems, and Society.en_US
dc.contributor.otherTechnology and Policy Program.en_US
dc.date.accessioned2019-09-16T21:17:58Z
dc.date.available2019-09-16T21:17:58Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/122161
dc.descriptionThesis: S.M. in Technology and Policy, Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 87-93).en_US
dc.description.abstractElectricity power systems, typically a very slow-moving and traditional industry, is in a state of flux as technological innovations, such as rooftop solar, home energy management systems, and electric vehicles, are being rapidly integrated into electric distribution systems. As the need to decarbonize the electricity sector becomes increasingly important, a distribution system operator could serve a useful purpose by operating distribution systems and acting as the market operator at a sufficiently granular level to potentially improve resiliency, decrease delivery losses, and send appropriate price signals to its customers. Currently, this latter functionality is assumed to be done using centralized economic dispatch. Given a very large number of small customers and their diverse preferences, it would be computationally expensive to implement centralized economic dispatch at the distribution level with perfect information. In this thesis, an alternative algorithm, referred to as decentralized economic dispatch, is introduced which dispatches power for radial electric distribution systems while accounting for heterogeneous demand functions across customers, demonstrating computationally feasibility, and respecting the physical limits of the system. Unlike other approaches proposed in literature, which often take many iterations or do not converge, the algorithm introduced here converges to the same solution as a centralized operator with perfect information, and does so with only two sweeps across the system. A proof-of-concept example on a 46-bus system demonstrates the physical and economic benefits of the distributed algorithm with varying levels of distributed energy resources.en_US
dc.description.statementofresponsibilityby Sruthi Davuluri.en_US
dc.format.extent93 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectInstitute for Data, Systems, and Society.en_US
dc.subjectTechnology and Policy Program.en_US
dc.titleDecentralized economic dispatch for radial electric distribution systemsen_US
dc.typeThesisen_US
dc.description.degreeS.M. in Technology and Policyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Societyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.contributor.departmentTechnology and Policy Programen_US
dc.identifier.oclc1117774189en_US
dc.description.collectionS.M.inTechnologyandPolicy Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Societyen_US
dspace.imported2019-09-16T21:17:56Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentESDen_US
mit.thesis.departmentIDSSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record