MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Algebraic geometry and representation theory in the Verlinde category

Author(s)
Venkatesh, Siddharth(Siddharth Narayan)
Thumbnail
Download1117775164-MIT.pdf (7.301Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mathematics.
Advisor
Pavel Etingof.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis studies algebraic geometry and the representation theory of group schemes in the setting of symmetric tensor categories over algebraically closed fields of positive characteristic. A specific focus is paid to the Verlinde category, a symmetric fusion category in characteristic p that serves as a universal base for all such categories. Symmetric tensor categories provide a natural setting in which it makes sense to discuss the notion of a commutative, associative unital algebra. In the first third of the thesis, we prove some fundamental facts about these algebras, showing that, in the Verlinde category and any category built out of it, finitely generated algebras are Noetherian, have finitely generated invariants and are finite as a module over their invariants. Subsequently, we use this result to extend some fundamental properties of commutative algebras from the original setting of vector spaces to the more general setting of symmetric tensor categories.
 
The middle portion of the thesis focuses on some other applications of commutative algebra in the Verlinde category to elaborate on some work of Ostrik and to obtain important combinatorial decomposition formulas. This is a presentation of joint work by the author with Etingof and Ostrik. Symmetric tensor categories also provide a natural setting in which to discuss affine group schemes and their representations, namely the commutative Hopf algebras and their comodules. The last part of this thesis focuses on the structure and representation theory of affine group schemes of finite type in the Verlinde category. Using some of the basic commutative algebra properties proved in the thesis, we extend some results of Masuoka from the setting of super vector spaces in positive characteristic to that of the Verlinde category.
 
In particular, we define the notion of a Harish-Chandra pair and show that the category of affine group schemes and their representations in the Verlinde category is equivalent to the category of Harish-Chandra pairs and their representations in the Verlinde category.
 
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 157-158).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/122170
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.