Show simple item record

dc.contributor.advisorPavel Etingof.en_US
dc.contributor.authorVenkatesh, Siddharth(Siddharth Narayan)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mathematics.en_US
dc.date.accessioned2019-09-16T22:34:03Z
dc.date.available2019-09-16T22:34:03Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/122170
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 157-158).en_US
dc.description.abstractThis thesis studies algebraic geometry and the representation theory of group schemes in the setting of symmetric tensor categories over algebraically closed fields of positive characteristic. A specific focus is paid to the Verlinde category, a symmetric fusion category in characteristic p that serves as a universal base for all such categories. Symmetric tensor categories provide a natural setting in which it makes sense to discuss the notion of a commutative, associative unital algebra. In the first third of the thesis, we prove some fundamental facts about these algebras, showing that, in the Verlinde category and any category built out of it, finitely generated algebras are Noetherian, have finitely generated invariants and are finite as a module over their invariants. Subsequently, we use this result to extend some fundamental properties of commutative algebras from the original setting of vector spaces to the more general setting of symmetric tensor categories.en_US
dc.description.abstractThe middle portion of the thesis focuses on some other applications of commutative algebra in the Verlinde category to elaborate on some work of Ostrik and to obtain important combinatorial decomposition formulas. This is a presentation of joint work by the author with Etingof and Ostrik. Symmetric tensor categories also provide a natural setting in which to discuss affine group schemes and their representations, namely the commutative Hopf algebras and their comodules. The last part of this thesis focuses on the structure and representation theory of affine group schemes of finite type in the Verlinde category. Using some of the basic commutative algebra properties proved in the thesis, we extend some results of Masuoka from the setting of super vector spaces in positive characteristic to that of the Verlinde category.en_US
dc.description.abstractIn particular, we define the notion of a Harish-Chandra pair and show that the category of affine group schemes and their representations in the Verlinde category is equivalent to the category of Harish-Chandra pairs and their representations in the Verlinde category.en_US
dc.description.statementofresponsibilityby Siddharth Venkatesh.en_US
dc.format.extent158 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMathematics.en_US
dc.titleAlgebraic geometry and representation theory in the Verlinde categoryen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.identifier.oclc1117775164en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Mathematicsen_US
dspace.imported2019-09-16T22:34:03Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentMathen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record