MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A gradient-damage theory for quasi brittle fracture

Author(s)
Narayan, Sooraj.
Thumbnail
Download1119388958-MIT.pdf (6.701Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Lallit Anand.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Phase-field modeling of brittle fracture of linear elastic solids has been the subject of several studies in the past 25 years. An attractive feature of this approach to model fracture is its seamless ability to simulate the complicated fracture processes of nucleation, propagation, branching and merging of cracks in arbitrary geometries. While most existing models have focussed on fracture of "ideal brittle" materials, we consider fracture of "quasi-brittle" materials. The material is considered to be quasi-brittle in the sense that it does not lose its entire load-carrying capacity at the onset of damage. Instead there is a gradual degradation of the strength of the material, which is the result of microscale decohesion/damage micromechanisms. In this thesis we discuss the formulation of our gradient-damage theory for quasi-brittle fracture using the virtual-power method. The macro- and microforce balances, obtained from the virtual power approach, together with a standard free-energy imbalance law under isothermal conditions, when supplemented with a set of thermodynamically-consistent constitutive equations will provide the governing equations for our theory. We have specialized our general theory to formulate a simple continuum model for fracture of concrete - a quasi-brittle material of vast importance. We have numerically implemented our theory in a finite element program, and simulated numerical examples which show the ability of the simulation capability to reproduce the macroscopic characteristics of the failure of concrete in several technically relevant geometries reported in the literature..
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 73-77).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/122236
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.