Show simple item record

dc.contributor.advisorDavid J. Perreault.en_US
dc.contributor.authorYang, Rachel S.(Rachel Shanting)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2019-11-22T00:01:43Z
dc.date.available2019-11-22T00:01:43Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/123006
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 72-74).en_US
dc.description.abstractMiniaturization of power electronics can improve the performance of many applications, such as renewable energy systems, data centers, and aerospace systems. Operation in the high frequency (HF) regime (3{ 30 MHz) has potential for miniaturizing power electronics, but designing small, efficient inductors at HF can be challenging. At these frequencies, losses due to skin and proximity effects are difficult to reduce, and gaps needed to keep B fields low in the core add fringing field loss. This thesis aims to improve the design of HF inductors. A low-loss inductor structure for HF applications and associated design guidelines that optimize for loss have been developed. The structure achieves low loss through quasi-distributed gaps and a new field shaping technique that achieves low winding loss through double-sided conduction. An example ~15 [mu]H inductor designed using the proposed guidelines achieved an experimental quality factor of 720 at 3MHz and 2A (peak) of ac current.en_US
dc.description.abstractIn some cases, litz wire may further improve the performance of the proposed structure. With litz wire, the example inductor achieved an improved quality factor of 980. The proposed structure also has great design and application flexibility. Core sets for this structure can be scaled by a factor-of-four in volume and still cover a large, continuous range of inductor requirements, e.g. power handling and inductances. A wide range of requirements can therefore be achieved with a small set of core pieces. The proposed inductor structure and design techniques thus have greater potential for commercial adoption to facilitate the design of low-loss HF inductors. The design techniques used in the proposed structure can also be extended to high-power radio-frequency (RF) applications, such as RF power amplifiers for industrial plasma generation. A modified version of the proposed structure, along with modified design guidelines, can achieve low loss in this operating space.en_US
dc.description.abstractSimulations show that an example ~600 nH inductor achieves a quality factor of 1900 at 13:56MHz and 78A (peak). Therefore, the developed design techniques and inductor structures are suitable for small, highly-efficient inductors at HF, and can thereby help realize high-frequency miniaturization of power electronics.en_US
dc.description.statementofresponsibilityby Rachel S. Yang.en_US
dc.format.extent74 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleLow-loss inductor design for high-frequency power applicationsen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1127567059en_US
dc.description.collectionM.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2019-11-22T00:01:42Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record