MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rethinking methods to train deep neural networks : contributions of distinct regimes during training

Author(s)
Wei, Wendy,M. Eng.Massachusetts Institute of Technology.
Thumbnail
Download1127649566-MIT.pdf (1004.Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Aleksander Ma̧dry.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Deep neural networks are known to be highly non-convex. Many of the methods used in deep learning which are informed by convex optimization work surprisingly well. The training dynamics of optimization methods such as momentum suggest that training occurs in distinct regimes, attributed to learning rate. In the low learning rate regime, many convex intuitions hold, and the recommended methods are able to reach a good solution. In the high learning rate regime, the training behavior is not convex-like, but training longer in this period achieves better generalization. This thesis focuses on rethinking deep network training from the perspective of these phases in training. Empirical results suggest that each training regime, although distinct, work together to produce high performance on deep learning tasks. Moreover, we re-examine popular learning rate schedules and find that the paradigm of high and low learning rate regimes helps to explain their advantages.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 29-30).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/123028
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.