Show simple item record

dc.contributor.advisorAleksander Ma̧dry.en_US
dc.contributor.authorWei, Wendy,M. Eng.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2019-11-22T00:03:08Z
dc.date.available2019-11-22T00:03:08Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/123028
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 29-30).en_US
dc.description.abstractDeep neural networks are known to be highly non-convex. Many of the methods used in deep learning which are informed by convex optimization work surprisingly well. The training dynamics of optimization methods such as momentum suggest that training occurs in distinct regimes, attributed to learning rate. In the low learning rate regime, many convex intuitions hold, and the recommended methods are able to reach a good solution. In the high learning rate regime, the training behavior is not convex-like, but training longer in this period achieves better generalization. This thesis focuses on rethinking deep network training from the perspective of these phases in training. Empirical results suggest that each training regime, although distinct, work together to produce high performance on deep learning tasks. Moreover, we re-examine popular learning rate schedules and find that the paradigm of high and low learning rate regimes helps to explain their advantages.en_US
dc.description.statementofresponsibilityby Wendy Wei.en_US
dc.format.extent30 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleRethinking methods to train deep neural networks : contributions of distinct regimes during trainingen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1127649566en_US
dc.description.collectionM.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2019-11-22T00:03:07Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record