MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Electrical Engineering and Computer Sciences
  • Electrical Engineering and Computer Sciences - Master's degree
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Understanding and mitigating unintended demographic bias in machine learning systems

Author(s)
Sweeney, Christopher(Christopher J.),M. Eng.Massachusetts Institute of Technology.
Thumbnail
Download1128813860-MIT.pdf (4.409Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Richard Fletcher and Maryam Najaan.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Machine Learning is becoming more and more influential in our society. Algorithms that learn from data are streamlining tasks in domains like employment, banking, education, heath care, social media, etc. Unfortunately, machine learning models are very susceptible to unintended bias, resulting in unfair and discriminatory algorithms with the power to adversely impact society. This unintended bias is usually subtle, emanating from many different sources and taking on many forms. This thesis will focus on understanding how unfair biases with respect to various demographic groups show up in machine learning systems. Furthermore, we develop multiple techniques to mitigate unintended demographic bias at various stages of typical machine learning pipelines. Using Natural Language Processing as a framework, we show substantial improvements in fairness for standard machine learning systems, when using our bias mitigation techniques.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 81-84).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/123131
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Electrical Engineering and Computer Sciences - Master's degree
  • Electrical Engineering and Computer Sciences - Master's degree

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.