Show simple item record

dc.contributor.advisorRichard Fletcher and Maryam Najaan.en_US
dc.contributor.authorSweeney, Christopher(Christopher J.),M. Eng.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2019-12-05T18:05:10Z
dc.date.available2019-12-05T18:05:10Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/123131
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 81-84).en_US
dc.description.abstractMachine Learning is becoming more and more influential in our society. Algorithms that learn from data are streamlining tasks in domains like employment, banking, education, heath care, social media, etc. Unfortunately, machine learning models are very susceptible to unintended bias, resulting in unfair and discriminatory algorithms with the power to adversely impact society. This unintended bias is usually subtle, emanating from many different sources and taking on many forms. This thesis will focus on understanding how unfair biases with respect to various demographic groups show up in machine learning systems. Furthermore, we develop multiple techniques to mitigate unintended demographic bias at various stages of typical machine learning pipelines. Using Natural Language Processing as a framework, we show substantial improvements in fairness for standard machine learning systems, when using our bias mitigation techniques.en_US
dc.description.statementofresponsibilityby Christopher Sweeney.en_US
dc.format.extent84 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleUnderstanding and mitigating unintended demographic bias in machine learning systemsen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1128813860en_US
dc.description.collectionM.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2019-12-05T18:05:09Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record