MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal nonlinear digital signal processing : a dynamical systems approach

Author(s)
Tanovic, Omer.
Thumbnail
Download1142632781-MIT.pdf (13.79Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Alexandre Megretski.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis addresses optimal nonlinear digital signal processing problems aimed to improve power efficiency of modern wireless transmission systems. The first part of this thesis is motivated by peak-to-average power ratio reduction of communication signals. The problem is formulated as minimization of a frequency-weighted convex quadratic cost subject to time-domain output amplitude constraints. A new method for converting optimality conditions into finite-latency stable systems generating optimal outputs with arbitrary precision is proposed. The second part contains analysis of the nonlinear distortion introduced into the base-band (discrete-time) input-output dynamics of the communication systems by the (continuous-time) power amplifier nonlinearity. It is shown that when the nonlinearity is represented by a Volterra series model the resulting baseband equivalent model is a series interconnection of a discrete-time Volterra series model, of the same degree and equivalent memory depth, and a linear system. The result suggests a new, analytically motivated, structure of digital pre-distortion (DPD) of power amplifier nonlinearities. The third part of the thesis focuses on analysis and design of digitally implemented pulse-width modulators (DPWM) used as quantizers for power amplifiers in switched-mode operation. A time-domain input-output model of DPWM which offers new insight into nonlinear behavior of this system is developed. A modified Lloyd-Max quantization based algorithm for linearization of the baseband of a DPWM output is proposed.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 181-193).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/124092
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.