Show simple item record

dc.contributor.advisorAlexandre Megretski.en_US
dc.contributor.authorTanovic, Omer.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2020-03-09T18:53:08Z
dc.date.available2020-03-09T18:53:08Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/124092
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 181-193).en_US
dc.description.abstractThis thesis addresses optimal nonlinear digital signal processing problems aimed to improve power efficiency of modern wireless transmission systems. The first part of this thesis is motivated by peak-to-average power ratio reduction of communication signals. The problem is formulated as minimization of a frequency-weighted convex quadratic cost subject to time-domain output amplitude constraints. A new method for converting optimality conditions into finite-latency stable systems generating optimal outputs with arbitrary precision is proposed. The second part contains analysis of the nonlinear distortion introduced into the base-band (discrete-time) input-output dynamics of the communication systems by the (continuous-time) power amplifier nonlinearity. It is shown that when the nonlinearity is represented by a Volterra series model the resulting baseband equivalent model is a series interconnection of a discrete-time Volterra series model, of the same degree and equivalent memory depth, and a linear system. The result suggests a new, analytically motivated, structure of digital pre-distortion (DPD) of power amplifier nonlinearities. The third part of the thesis focuses on analysis and design of digitally implemented pulse-width modulators (DPWM) used as quantizers for power amplifiers in switched-mode operation. A time-domain input-output model of DPWM which offers new insight into nonlinear behavior of this system is developed. A modified Lloyd-Max quantization based algorithm for linearization of the baseband of a DPWM output is proposed.en_US
dc.description.statementofresponsibilityby Omer Tanovic.en_US
dc.format.extent193 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleOptimal nonlinear digital signal processing : a dynamical systems approachen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1142632781en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2020-03-09T18:53:07Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record