Show simple item record

dc.contributor.advisorMichael J. Cima.en_US
dc.contributor.authorBashyam, Ashvin(Ashvin Reddy)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2020-03-09T18:58:31Z
dc.date.available2020-03-09T18:58:31Z
dc.date.copyright2019en_US
dc.date.issued2019en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/124112
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 144-154).en_US
dc.description.abstractMany diseases manifest as a shift in fluids between distinct tissue fluid compartments. For example, fluid depletion and fluid overload lead to a deficit or accumulation of fluids within the intramuscular interstitial space. A direct measurement of these fluid shifts could serve as a highly specific diagnostic or prognostic tool to improve clinical management of these disorders. Proton magnetic resonance is exquisitely sensitive to the local physical and chemical environment of water molecules within the body. Therefore, we hypothesized that localized magnetic resonance (MR) measurements could interrogate local tissue fluid distributions and assess systemic fluid volume status. This thesis explored the potential for a portable MR sensor to characterize shifts in tissue fluid distribution and identify the onset and progression of fluid volume status disorders.en_US
dc.description.abstractFirst, we designed a portable, single sided MR sensor capable of performing remote measurements of the multicomponent T2 signal originating from distinct fluid compartments. Further, we present a design framework to create single sided sensors with magnetic field strength and geometry suitable for a wide range of applications. We then demonstrate that a localized measure of tissue fluid distribution using a portable MR sensor is capable of identifying systemic changes in fluid volume status associated with fluid depletion. We validate these findings via whole animal MR measurements and a standard MRI scanner capable of localizing its measurement towards the muscle tissue. Finally, we explore new strategies to enable the translation of these portable MR sensors towards humans.en_US
dc.description.abstractWe demonstrate techniques combining multicomponent T2 relaxometry, depth-resolved measurements, and diffusion-weighted pulse sequences to improve identification of fluid shifts within muscle tissue despite the presence of confounding tissues, such as the subcutaneous tissue. The magnetic resonance sensors and measurement techniques developed here lay the foundations for a non-invasive, portable, and quantitative indicator of tissue fluid distribution. This technology has the potential to serve as a clinical diagnostic for both localized and systemic fluid imbalances. Furthermore, these approaches enabling portable, quantitative MR measurements can be extended to the diagnosis and staging of the progression of other diseases which exhibit shifts in fluid distributions.en_US
dc.description.statementofresponsibilityby Ashvin Bashyam.en_US
dc.format.extent154 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titlePortable magnetic resonance sensors and methods for noninvasive disease diagnosticsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1142101313en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2020-03-09T18:58:30Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record