MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanistic modeling of bacterial nutrient uptake strategies

Author(s)
Norris, Noele Rosalie.
Thumbnail
Download1142187796-MIT.pdf (7.356Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Emilio Frazzoli and Roman Stocker.
Terms of use
MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Bacteria have developed a variety of strategies to nd and consume the substrates necessary for both the cell's energy-consuming processes and for the additional biomass needed to replicate. A greater understanding of the diversity and regulation of these strategies can provide us with a number of insights relevant for a variety of applications, from predicting bacterial population dynamics and thus carbon-cycling rates in the ocean to bio-engineering bacteria into microscale robots. Here I use toy, mechanistic models of single-cell metabolism that allow me to quantify the costs and benefits of various nutrient uptake strategies. I find that: (i) a sensing-uptake trade-off governs E. coli's regulation of maltose uptake and chemotaxis to maltose; (ii) a rate-affinity trade-off in nutrient transport systems governs the speciation of marine oligotrophic and copiotrophic heterotrophs; and (iii) an exploration-conservation trade-off governs the prevalence of motility in the marine microbial world. This work thus provides new understanding of how both phenotypic diversity and cellular regulation are governed by trade-offs for maximizing growth rate in dierent environments.
Description
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (pages 155-172).
 
Date issued
2019
URI
https://hdl.handle.net/1721.1/124116
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.