Show simple item record

dc.contributor.authorSerry, Mahmood
dc.contributor.authorVasa, James
dc.date.accessioned2020-08-06T19:59:15Z
dc.date.available2020-08-06T19:59:15Z
dc.date.issued2020-08-06
dc.identifier.urihttps://hdl.handle.net/1721.1/126495
dc.description.abstractSpare parts demand forecasting is a key activity for asset intensive industries, but it is challenging due to the underlying demand characteristics. Demand is characterized by periods of zero demand arrivals; and the size of the order is variable with large, unexpected spikes. Schlumberger, an oil and gas service manufacturer, is facing the issue of low forecast accuracy for its spare parts, and has challenged the team to improve it. This research uses machine learning techniques to improve demand forecasting accuracy of spare parts for Schlumberger. The methodology of the research starts with classifying the parts into four classes namely: smooth; intermittent; erratic; and lumpy. Then, we apply recommended time series based on the literature for forecasting four classes. The time series forecast was then fed as features along with judgmental forecast and the demand parameters into two different machine learning algorithms, namely Classification and Regression Trees (CART) and Random Forests. Both models showed more than 75% improvement in accuracy over conventional demand forecasting methods when measured by Root Mean Squared Error. This improvement shows the potential benefit of adding human judgement as a parameter into machine learning algorithms when forecasting spare parts.en_US
dc.description.sponsorshipSchlumberger Limiteden_US
dc.language.isoen_USen_US
dc.subjectdemand planningen_US
dc.subjectmachine learningen_US
dc.titleA Forecasting Face-Off for Oil and Gas Spare Partsen_US
dc.typeOtheren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record