MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning and optimization in the face of data perturbations

Author(s)
Staib, Matthew James.
Thumbnail
Download1191230169-MIT.pdf (4.301Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Stefanie Jegelka.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Many problems in the machine learning pipeline boil down to maximizing the expectation of a function over a distribution. This is the classic problem of stochastic optimization. There are two key challenges in solving such stochastic optimization problems: 1) the function is often non-convex, making optimization difficult; 2) the distribution is not known exactly, but may be perturbed adversarially or is otherwise obscured. Each issue is individually so challenging to warrant a substantial accompanying body of work addressing it, but addressing them simultaneously remains difficult. This thesis addresses problems at the intersection of non-convexity and data perturbations. We study the intersection of the two issues along two dual lines of inquiry: first, we build perturbation-aware algorithms with guarantees for non-convex problems; second, we seek to understand how data perturbations can be leveraged to enhance non-convex optimization algorithms. Along the way, we will study new types of data perturbations and seek to understand their connection to generalization.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, May, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 145-163).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127004
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.