dc.contributor.advisor | Stefanie Jegelka. | en_US |
dc.contributor.author | Staib, Matthew James. | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2020-09-03T17:41:26Z | |
dc.date.available | 2020-09-03T17:41:26Z | |
dc.date.copyright | 2020 | en_US |
dc.date.issued | 2020 | en_US |
dc.identifier.uri | https://hdl.handle.net/1721.1/127004 | |
dc.description | Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, May, 2020 | en_US |
dc.description | Cataloged from the official PDF of thesis. | en_US |
dc.description | Includes bibliographical references (pages 145-163). | en_US |
dc.description.abstract | Many problems in the machine learning pipeline boil down to maximizing the expectation of a function over a distribution. This is the classic problem of stochastic optimization. There are two key challenges in solving such stochastic optimization problems: 1) the function is often non-convex, making optimization difficult; 2) the distribution is not known exactly, but may be perturbed adversarially or is otherwise obscured. Each issue is individually so challenging to warrant a substantial accompanying body of work addressing it, but addressing them simultaneously remains difficult. This thesis addresses problems at the intersection of non-convexity and data perturbations. We study the intersection of the two issues along two dual lines of inquiry: first, we build perturbation-aware algorithms with guarantees for non-convex problems; second, we seek to understand how data perturbations can be leveraged to enhance non-convex optimization algorithms. Along the way, we will study new types of data perturbations and seek to understand their connection to generalization. | en_US |
dc.description.statementofresponsibility | by Matthew James Staib. | en_US |
dc.format.extent | 241 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Learning and optimization in the face of data perturbations | en_US |
dc.type | Thesis | en_US |
dc.description.degree | Ph. D. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.identifier.oclc | 1191230169 | en_US |
dc.description.collection | Ph.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science | en_US |
dspace.imported | 2020-09-03T17:41:26Z | en_US |
mit.thesis.degree | Doctoral | en_US |
mit.thesis.department | EECS | en_US |