MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Toward robust active semantic SLAM via Max-Mixtures

Author(s)
Baxter, David P.,Nav. E.(David Paul)Massachusetts Institute of Technology.
Thumbnail
Download1191698733-MIT.pdf (17.38Mb)
Alternative title
Toward robust active semantic simultaneous localization and mapping via Max-Mixtures
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
John J. Leonard.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In a step towards the level of autonomy seen in humans, this work attempts to emulate a high level and low level approach to world representation and short term adaptation. Specifically, this work demonstrates an implementation of robotic perception that transforms stereo camera and LIDAR sensor data into a sparse map of semantic objects and a locally consistent flexible occupancy grid. This provides a topological representation for grouping objects into higher level classes and a geometric map for traditional planning. Additionally, a reactive dynamic window obstacle avoidance system is shown to quickly plan short term trajectories that avoid both static and dynamic objects while progressing towards a goal. To combine computational efficiency with the robust advantages of multimodal inference, this work uses Semantic Max Mixture factors to approximate multimodal belief in a manner compatible to nonlinear least squares solvers. Experimental results are presented using a RACECAR mobile robot operating in several hallways of MIT, using AprilTags as surrogates for objects in the Semantic Max Mixtures Algorithm. Future work will seek to further integrate the components to create a closed-loop active semantic navigation and mapping algorithm.
Description
Thesis: Nav. E., Massachusetts Institute of Technology, Department of Mechanical Engineering, May, 2020
 
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, May, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 75-78).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127041
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.