Shape memory alloy rotary actuator for CubeSat deployable structures
Author(s)
Chun, Katherine S.(Katherine Shisuka)
Download1191819110-MIT.pdf (43.68Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics.
Advisor
Kerri Cahoy.
Terms of use
Metadata
Show full item recordAbstract
Small satellites have lowered the barrier to entry for space-bound science and technology demonstrations. However, the small form factor requires extremely low size, weight, and power for any on-board hardware. Precision actuation of deployable structures has previously been achievable only through low SWaP single-use actuators or motor-driven, high SWaP multiple-use actuators. The Folded Lightweight Actuated Positioning System has the potential to provide an ultra-lightweight multiple-use actuator by using a Joule-heated shape memory alloy-based hinge. The hinge uses two shape memory alloy strips which are trained in opposite directions and mounted into a rotary actuator. Two different shape memory alloy geometries are explored: a rectangular cross-section and a circular cross-section. The rectangular hinge actuates over a range of ±20° with an average power of 0.14 W. The circular hinge actuates over a range of ±23° with an average power of 0.073 W. A closed-loop controller uses pulse width modulation and encoder measurements to actuate the rectangular hinge to within 2' of the desired angle.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, May, 2020 Cataloged from the official PDF of thesis. Includes bibliographical references (pages 77-82).
Date issued
2020Department
Massachusetts Institute of Technology. Department of Aeronautics and AstronauticsPublisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.