Show simple item record

dc.contributor.advisorKerri Cahoy.en_US
dc.contributor.authorChun, Katherine S.(Katherine Shisuka)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2020-09-03T17:45:16Z
dc.date.available2020-09-03T17:45:16Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/127066
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, May, 2020en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 77-82).en_US
dc.description.abstractSmall satellites have lowered the barrier to entry for space-bound science and technology demonstrations. However, the small form factor requires extremely low size, weight, and power for any on-board hardware. Precision actuation of deployable structures has previously been achievable only through low SWaP single-use actuators or motor-driven, high SWaP multiple-use actuators. The Folded Lightweight Actuated Positioning System has the potential to provide an ultra-lightweight multiple-use actuator by using a Joule-heated shape memory alloy-based hinge. The hinge uses two shape memory alloy strips which are trained in opposite directions and mounted into a rotary actuator. Two different shape memory alloy geometries are explored: a rectangular cross-section and a circular cross-section. The rectangular hinge actuates over a range of ±20° with an average power of 0.14 W. The circular hinge actuates over a range of ±23° with an average power of 0.073 W. A closed-loop controller uses pulse width modulation and encoder measurements to actuate the rectangular hinge to within 2' of the desired angle.en_US
dc.description.statementofresponsibilityby Katherine S. Chun.en_US
dc.format.extent82 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleShape memory alloy rotary actuator for CubeSat deployable structuresen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.identifier.oclc1191819110en_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Aeronautics and Astronauticsen_US
dspace.imported2020-09-03T17:45:15Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentAeroen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record