MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interpretable machine learning methods with applications to health care

Author(s)
Wang, Yuchen.
Thumbnail
Download1191901101-MIT.pdf (2.343Mb)
Other Contributors
Massachusetts Institute of Technology. Operations Research Center.
Advisor
Dimitris Bertsimas.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
With data becoming increasingly available in recent years, black-box algorithms like boosting methods or neural networks play more important roles in the real world. However, interpretability is a severe need for several areas of applications, like health care or business. Doctors or managers often need to understand how models make predictions, in order to make their final decisions. In this thesis, we improve and propose some interpretable machine learning methods by using modern optimization. We also use two examples to illustrate how interpretable machine learning methods help to solve problems in health care. The first part of this thesis is about interpretable machine learning methods using modern optimization. In Chapter 2, we illustrate how to use robust optimization to improve the performance of SVM, Logistic Regression, and Classification Trees for imbalanced datasets. In Chapter 3, we discuss how to find optimal clusters for prediction. we use real-world datasets to illustrate this is a fast and scalable method with high accuracy. In Chapter 4, we deal with optimal regression trees with polynomial function in leaf nodes and demonstrate this method improves the out-of-sample performance. The second part of this thesis is about how interpretable machine learning methods improve the current health care system. In Chapter 5, we illustrate how we use Optimal Trees to predict the risk mortality for candidates awaiting liver transplantation. Then we develop a transplantation policy called Optimized Prediction of Mortality (OPOM), which reduces mortality significantly in simulation analysis and also improves fairness. In Chapter 6, we propose a new method based on Optimal Trees which perform better than original rules in identifying children at very low risk of clinically important traumatic brain injury (ciTBI). If this method is implemented in the electronic health record, the new rules may reduce unnecessary computed tomographies (CT).
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, May, 2020
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 131-142).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/127295
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Publisher
Massachusetts Institute of Technology
Keywords
Operations Research Center.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.