Show simple item record

dc.contributor.advisorDimitris Bertsimas.en_US
dc.contributor.authorWang, Yuchen.en_US
dc.contributor.otherMassachusetts Institute of Technology. Operations Research Center.en_US
dc.date.accessioned2020-09-15T21:50:42Z
dc.date.available2020-09-15T21:50:42Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/127295
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, May, 2020en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 131-142).en_US
dc.description.abstractWith data becoming increasingly available in recent years, black-box algorithms like boosting methods or neural networks play more important roles in the real world. However, interpretability is a severe need for several areas of applications, like health care or business. Doctors or managers often need to understand how models make predictions, in order to make their final decisions. In this thesis, we improve and propose some interpretable machine learning methods by using modern optimization. We also use two examples to illustrate how interpretable machine learning methods help to solve problems in health care. The first part of this thesis is about interpretable machine learning methods using modern optimization. In Chapter 2, we illustrate how to use robust optimization to improve the performance of SVM, Logistic Regression, and Classification Trees for imbalanced datasets. In Chapter 3, we discuss how to find optimal clusters for prediction. we use real-world datasets to illustrate this is a fast and scalable method with high accuracy. In Chapter 4, we deal with optimal regression trees with polynomial function in leaf nodes and demonstrate this method improves the out-of-sample performance. The second part of this thesis is about how interpretable machine learning methods improve the current health care system. In Chapter 5, we illustrate how we use Optimal Trees to predict the risk mortality for candidates awaiting liver transplantation. Then we develop a transplantation policy called Optimized Prediction of Mortality (OPOM), which reduces mortality significantly in simulation analysis and also improves fairness. In Chapter 6, we propose a new method based on Optimal Trees which perform better than original rules in identifying children at very low risk of clinically important traumatic brain injury (ciTBI). If this method is implemented in the electronic health record, the new rules may reduce unnecessary computed tomographies (CT).en_US
dc.description.statementofresponsibilityby Yuchen Wang.en_US
dc.format.extent142 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectOperations Research Center.en_US
dc.titleInterpretable machine learning methods with applications to health careen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.contributor.departmentSloan School of Management
dc.identifier.oclc1191901101en_US
dc.description.collectionPh.D. Massachusetts Institute of Technology, Sloan School of Management, Operations Research Centeren_US
dspace.imported2020-09-15T21:50:42Zen_US
mit.thesis.degreeDoctoralen_US
mit.thesis.departmentSloanen_US
mit.thesis.departmentOperResen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record