Show simple item record

dc.contributor.advisorMax M. Shulaker.en_US
dc.contributor.authorLau, Christian Lee.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2020-09-15T21:53:26Z
dc.date.available2020-09-15T21:53:26Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/127349
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, May, 2020en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 78-82).en_US
dc.description.abstractElectronics is approaching a major paradigm shift as silicon transistor scaling no longer yields historical energy-efficiency benefits, spurring research towards beyond-silicon nanotechnologies. In particular, carbon nanotube field-effect transistor (CNFET)-based digital circuits promise substantial energy-efficiency benefits, but the inability to (1) fabricate complementary metal-oxide-semiconductor (CMOS) CNFET circuits that integrate both PMOS and NMOS CNFETs and (2) perfectly control intrinsic nanoscale defects and variability in carbon nanotubes has precluded the realization of very-large-scale integrated CMOS systems. Here we propose and experimentally demonstrate a comprehensive manufacturing methodology for CNTs, which encompasses a set of original processing and circuit design techniques that are combined to overcome all of these intrinsic CNT challenges (variability, manufacturing defects, and material defects) across full industry-standard large-area substrates. As a demonstration of the feasibility of implementing this manufacturing methodology, we experimentally demonstrate the world's first microprocessor built from a beyond-silicon emerging nanotechnology: RV16X-NANO. This 16-bit microprocessor is based on the RISC-V instruction set, runs standard 32-bit instructions on 16-bit data and addresses, comprises more than 14,000 CMOS CNFETs and is designed and fabricated using industry-standard design flows and processes. This work is a major advance for carbon nanotube-based electronics, and more broadly experimentally validates a promising path towards realizing practical next-generation beyond-silicon electronic systems.en_US
dc.description.statementofresponsibilityby Christian Lee Lau.en_US
dc.format.extent82 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleVery-large-scale-integration of complementary carbon nanotube field-effect transistorsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1192483926en_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2020-09-15T21:53:25Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record