MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of freestream turbulence on boundary layer loss generation

Author(s)
Gakhar, Kanika.
Thumbnail
Download1227279361-MIT.pdf (3.680Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics.
Advisor
Edward M. Greitzer, Choon S. Tan and Masha Folk
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis describes an analysis of the effect of freestream turbulence (FST) on turbulent boundary layer loss generation. A relation has been derived between a turbulence parameter, which characterizes the FST, and the increase in boundary layer dissipation coefficient. The relation gives guidelines for trade studies, for example between combustor turbulence properties and turbine performance in a typical gas turbine engine. Based on the FST length-scale, two regimes of FST influence have been defined, with consequent different functional dependencies between FST parameters and boundary layer dissipation coefficient. In one regime, characterized by self-similarity of mean velocity and turbulence production profiles, the dissipation coefficient is a function of local parameters, and can be determined using measurement data for effects of FST on skin-friction. In the second regime, the boundary layer deviates from equilibrium due to the lag between the rate of turbulence production and dissipation. For this latter case, a method has been developed to estimate the effect of FST on dissipation using a modified shear-lag model, based on the conservation of turbulent kinetic energy. This thesis shows that the increase in boundary layer loss due to local FST can be as high as 73%, and that non-equilibrium effects can result in an additional increase in boundary layer loss as high as 8%. Finally, the framework developed in this thesis has also been applied to an industry relevant situation, quantifying the effect of combustor turbulence on high pressure turbine (HPT) performance. Example trade studies show that increasing the size of dilution ports, increasing the length of the combustor, and rearranging or re-orienting the dilution jets in cross-flow in the combustor all can help decrease HPT profile loss generation, and potentially increase stage efficiency up to 0.5%.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, September, 2020
 
Cataloged from student-submitted PDF of thesis.
 
Includes bibliographical references (pages 197-201).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/129196
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.