Show simple item record

dc.contributor.advisorEdward M. Greitzer, Choon S. Tan and Masha Folken_US
dc.contributor.authorGakhar, Kanika.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2021-01-06T18:34:07Z
dc.date.available2021-01-06T18:34:07Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/129196
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, September, 2020en_US
dc.descriptionCataloged from student-submitted PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 197-201).en_US
dc.description.abstractThis thesis describes an analysis of the effect of freestream turbulence (FST) on turbulent boundary layer loss generation. A relation has been derived between a turbulence parameter, which characterizes the FST, and the increase in boundary layer dissipation coefficient. The relation gives guidelines for trade studies, for example between combustor turbulence properties and turbine performance in a typical gas turbine engine. Based on the FST length-scale, two regimes of FST influence have been defined, with consequent different functional dependencies between FST parameters and boundary layer dissipation coefficient. In one regime, characterized by self-similarity of mean velocity and turbulence production profiles, the dissipation coefficient is a function of local parameters, and can be determined using measurement data for effects of FST on skin-friction. In the second regime, the boundary layer deviates from equilibrium due to the lag between the rate of turbulence production and dissipation. For this latter case, a method has been developed to estimate the effect of FST on dissipation using a modified shear-lag model, based on the conservation of turbulent kinetic energy. This thesis shows that the increase in boundary layer loss due to local FST can be as high as 73%, and that non-equilibrium effects can result in an additional increase in boundary layer loss as high as 8%. Finally, the framework developed in this thesis has also been applied to an industry relevant situation, quantifying the effect of combustor turbulence on high pressure turbine (HPT) performance. Example trade studies show that increasing the size of dilution ports, increasing the length of the combustor, and rearranging or re-orienting the dilution jets in cross-flow in the combustor all can help decrease HPT profile loss generation, and potentially increase stage efficiency up to 0.5%.en_US
dc.description.statementofresponsibilityby Kanika Gakhar.en_US
dc.format.extent201 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleEffect of freestream turbulence on boundary layer loss generationen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.identifier.oclc1227279361en_US
dc.description.collectionS.M. Massachusetts Institute of Technology, Department of Aeronautics and Astronauticsen_US
dspace.imported2021-01-06T18:34:06Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentAeroen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record