MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computational design and fabrication of portable MRI systems

Author(s)
McDaniel, Patrick Christopher.
Thumbnail
Download1227704123-MIT.pdf (17.72Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Lawrence L. Wald.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this work, I have developed techniques for designing portable MRI scanners and have applied them to three portable systems for brain imaging. I first describe the procedue for designing a portable, low-field MRI scanner - in particular, how the constraints of compactness and portability affect the design of all system components (magnets, coils, sequences, RF pulses, and reconstruction schemes). I then describe the design of the principal hardware components of a portable MRI system: the B₀ magnet, the magnet shim array, the gradient coils, and the RF coils. This work makes novel use of numerical and computational tools for both sub-system design and physical construction. I next apply this paradigm to the design of gradient coils and a shim magnet array for portable whole-brain MRI scanner and demonstrate in vivo adult brain images. Finally, I describe two novel MRI scanners designed ab ovo using the approach described herein. The former is the "MR Cap", a single-sided MRI device designed for imaging over a reduced 8 x 8 x 3cm³ region of the adult brain; the latter is the "Helmet MRI", a whole-brain scanner optimized specifically for the head geometry.
Description
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, September, 2020
 
Cataloged from student-submitted PDF of thesis.
 
Includes bibliographical references (pages 191-212).
 
Date issued
2020
URI
https://hdl.handle.net/1721.1/129296
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.