dc.contributor.advisor | Lawrence L. Wald. | en_US |
dc.contributor.author | McDaniel, Patrick Christopher. | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2021-01-06T20:17:04Z | |
dc.date.available | 2021-01-06T20:17:04Z | |
dc.date.copyright | 2020 | en_US |
dc.date.issued | 2020 | en_US |
dc.identifier.uri | https://hdl.handle.net/1721.1/129296 | |
dc.description | Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, September, 2020 | en_US |
dc.description | Cataloged from student-submitted PDF of thesis. | en_US |
dc.description | Includes bibliographical references (pages 191-212). | en_US |
dc.description.abstract | In this work, I have developed techniques for designing portable MRI scanners and have applied them to three portable systems for brain imaging. I first describe the procedue for designing a portable, low-field MRI scanner - in particular, how the constraints of compactness and portability affect the design of all system components (magnets, coils, sequences, RF pulses, and reconstruction schemes). I then describe the design of the principal hardware components of a portable MRI system: the B₀ magnet, the magnet shim array, the gradient coils, and the RF coils. This work makes novel use of numerical and computational tools for both sub-system design and physical construction. I next apply this paradigm to the design of gradient coils and a shim magnet array for portable whole-brain MRI scanner and demonstrate in vivo adult brain images. Finally, I describe two novel MRI scanners designed ab ovo using the approach described herein. The former is the "MR Cap", a single-sided MRI device designed for imaging over a reduced 8 x 8 x 3cm³ region of the adult brain; the latter is the "Helmet MRI", a whole-brain scanner optimized specifically for the head geometry. | en_US |
dc.description.statementofresponsibility | by Patrick Christopher McDaniel. | en_US |
dc.format.extent | 212 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Computational design and fabrication of portable MRI systems | en_US |
dc.type | Thesis | en_US |
dc.description.degree | Ph. D. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.identifier.oclc | 1227704123 | en_US |
dc.description.collection | Ph.D. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science | en_US |
dspace.imported | 2021-01-06T20:17:03Z | en_US |
mit.thesis.degree | Doctoral | en_US |
mit.thesis.department | EECS | en_US |