| dc.contributor.advisor | John V. Guttag. | en_US |
| dc.contributor.author | Goyal, Udgam. | en_US |
| dc.contributor.other | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science. | en_US |
| dc.date.accessioned | 2021-02-19T20:51:20Z | |
| dc.date.available | 2021-02-19T20:51:20Z | |
| dc.date.copyright | 2020 | en_US |
| dc.date.issued | 2020 | en_US |
| dc.identifier.uri | https://hdl.handle.net/1721.1/129909 | |
| dc.description | Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, February, 2020 | en_US |
| dc.description | Cataloged from student-submitted PDF of thesis. | en_US |
| dc.description | Includes bibliographical references (pages 57-58). | en_US |
| dc.description.abstract | In this thesis, we apply four machine learning models to NFL play-by-play data from 2009-2018 to predict whether a team will run or pass the ball on a given play. We tested our models using league-wide and team-specific data in five different situations on the field. Our best league-wide models achieved a test accuracy of 80% and our best team-specific models achieved a test accuracy of 86%. Relative to the baseline of the run-to-pass ratio, the best league-wide models achieved an increase in accuracy of 25% and the best team-specific models achieved an increase of 27%. Our models showed that the Tennessee Titans, the New York Jets, and the Cincinnati Bengals have been the most predictable offenses in the NFL over 10 years. We found that a team's in-game run-to-pass ratio and their win and score probabilities are the driving factors for offensive play-calling. Additionally, our results show that teams are more predictable later in games, and that less predictable teams tend to experience greater success offensively. | en_US |
| dc.description.statementofresponsibility | by Udgam Goyal. | en_US |
| dc.format.extent | 58 pages | en_US |
| dc.language.iso | eng | en_US |
| dc.publisher | Massachusetts Institute of Technology | en_US |
| dc.rights | MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. | en_US |
| dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
| dc.subject | Electrical Engineering and Computer Science. | en_US |
| dc.title | Leveraging machine learning to predict playcalling tendencies in the NFL | en_US |
| dc.type | Thesis | en_US |
| dc.description.degree | M. Eng. | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
| dc.identifier.oclc | 1237411720 | en_US |
| dc.description.collection | M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science | en_US |
| dspace.imported | 2021-02-19T20:50:50Z | en_US |
| mit.thesis.degree | Master | en_US |
| mit.thesis.department | EECS | en_US |