Show simple item record

dc.contributor.advisorJames Bales.en_US
dc.contributor.authorPinzón, Carla Nicole.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2021-02-19T20:55:52Z
dc.date.available2021-02-19T20:55:52Z
dc.date.copyright2020en_US
dc.date.issued2020en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/129917
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, February, 2020en_US
dc.descriptionCataloged from student-submitted PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 91-95).en_US
dc.description.abstractIn Autonomous Underwater Vehicles (AUVs), many potential failure modes exist due to pressure housing and the need for connections between different pressure housings. Waterproof connectors do exist but drive up the price and weight of underwater systems, a costly disadvantage as mass and volume are at a premium for an underwater system. If we can remove the necessity for physical connectors, we can design cheaper, more robust submarines. This can be done with wireless power transfer (WPT), which can transmit power efficiently across mediums within the submarine, therefore eliminating the need for physical connections and making underwater systems more compact and light-weight. The thesis presents two WPT systems for an AUV with two different inverters that convert DC power to AC power that drive the WPT system. The first system presented uses a Class E Inverter, a common topology for DC-AC conversion, and the second system utilizes a Phi-2 Inverter, a topology that uses the inherent parasitic capacitances to substitute for physical components. The WPT system utilizes magnetic resonance coupling to transmit power from transmitter coils attached to the inverters to receiver coils attached to a load through a rectifier. Simulations show that, when correctly tuned, the two designs can give comparable performance in power transfer efficiency and range. The choice of design is likely to be decided by a combination of the size and weight of the finished system, along with the ease of design.en_US
dc.description.statementofresponsibilityby Carla Nicole Pinzón.en_US
dc.format.extent95 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleDesign of a Phi-2 and a Class E inverter for underwater systemsen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1237530580en_US
dc.description.collectionM.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2021-02-19T20:55:22Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record