Show simple item record

dc.contributor.advisorAlex Pentland.en_US
dc.contributor.authorChoi, Seri,M. Eng.Massachusetts Institute of Technology.en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2021-05-24T19:40:22Z
dc.date.available2021-05-24T19:40:22Z
dc.date.copyright2021en_US
dc.date.issued2021en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/130685
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, February, 2021en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 45-47).en_US
dc.description.abstractOnline review platforms have become an essential element of the business industry, providing users in-depth information on businesses and other users' experiences. The purpose of this study is to examine possible bias or discriminatory behaviors in users' rating habits in the Yelp dataset. The Surprise recommender system is utilized to produce expected ratings for the test set, training the model with 75% of the original dataset to learn the rating trends. Then, the ordinary least squares (OLS) linear regression is applied to identify which factors affected the percent change and which categories or locations show more bias than the others. This paper can provide insights into ways that bias can manifest within a dataset due to non-experimental factors such as social psychology; future research into this topic can therefore take these non-experimental factors, such as the discriminatory bias found in Yelp reviews, into consideration in order to reduce bias when utilizing machine learning algorithms.en_US
dc.description.statementofresponsibilityby Seri Choi.en_US
dc.format.extent47 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAn empirical study identifying bias in Yelp dataseten_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1251779073en_US
dc.description.collectionM.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2021-05-24T19:40:22Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record