MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Infrastructure for modeling and inference engineering with 3D generative scene graphs

Author(s)
Garrett, Austin J.
Thumbnail
Download1251779760-MIT.pdf (14.19Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Vikash K. Mansinghka.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Recent advances in probabilistic programming have enabled the development of probabilistic generative models for visual perception using a rich abstract representation of 3D scene geometry called a scene graph. However, there remain several challenges in the practical implementation of scene graph models, including human-editable specification, visualization, priors, structure inference, hyperparameters tuning, and benchmarking. In this thesis, I describe the development of infrastructure to enable the development and research of scene graph models by researchers and practitioners. A description of a preliminary scene graph model and inference program for 3D scene structure is provided, along with an implementation in the probabilistic programming language Gen. Utilities for visualizing and understanding distributions over scene graphs are developed. Synthetic enumerative tests of the posterior and inference algorithm are conducted, and conclusions drawn for the improvement of the proposed modeling components. Finally, I collect and analyze real-world scene graph data, and use it to optimize model hyperparameters; the preliminary structure inference program is then tested in a structure prediction task with both the unoptimized and optimized models.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, February, 2021
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 67-68).
 
Date issued
2021
URI
https://hdl.handle.net/1721.1/130688
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.