MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neural Bayesian goal inference for symbolic planning domains

Author(s)
Mann, Jordyn(Jordyn L.)
Thumbnail
Download1251800415-MIT.pdf (1.838Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Vikash Mansinghka.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
There are several reasons for which one may aim to infer the short- and long-term goals of agents in diverse physical domains. As increasingly powerful autonomous systems come into development, it is conceivable that they may eventually need to accurately infer the goals of humans. There are also more immediate reasons for which this sort of inference may be desirable, such as in the use case of intelligent personal assistants. This thesis introduces a neural Bayesian approach to goal inference in multiple symbolic planning domains and compares the results of this approach to the results of a recently developed Monte Carlo Bayesian inference method known as Sequential Inverse Plan Search (SIPS). SIPS is based on sequential Monte Carlo inference for Bayesian inversion of probabilistic plan search in Planning Domain Definition Language (PDDL) domains. In addition to the neural architectures, the thesis also introduces approaches for converting PDDL predicate state representations to numerical arrays and vectors suitable for input to the neural networks. The experimental results presented indicate that for the domains investigated, in cases where the training set is representative of the test set, the neural approach provides similar accuracy results to SIPS in the later portions of the observation sequences with a far shorter amortized time cost. However, in earlier timesteps of those observation sequences and in cases where the training set is less similar to the testing set, SIPS outperforms the neural approach in terms of accuracy. These results indicate that a model-based inference method where SIPS uses a neural proposal based on the neural networks designed in this thesis could have the potential to combine the advantages of both goal inference approaches by improving the speed of SIPS inference while maintaining generalizability and high accuracy throughout the timesteps of the observation sequences.
Description
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, February, 2021
 
Cataloged from the official PDF of thesis.
 
Includes bibliographical references (pages 51-52).
 
Date issued
2021
URI
https://hdl.handle.net/1721.1/130701
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.