Show simple item record

dc.contributor.advisorVikash Mansinghka.en_US
dc.contributor.authorMann, Jordyn(Jordyn L.)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2021-05-24T19:52:22Z
dc.date.available2021-05-24T19:52:22Z
dc.date.copyright2021en_US
dc.date.issued2021en_US
dc.identifier.urihttps://hdl.handle.net/1721.1/130701
dc.descriptionThesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, February, 2021en_US
dc.descriptionCataloged from the official PDF of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 51-52).en_US
dc.description.abstractThere are several reasons for which one may aim to infer the short- and long-term goals of agents in diverse physical domains. As increasingly powerful autonomous systems come into development, it is conceivable that they may eventually need to accurately infer the goals of humans. There are also more immediate reasons for which this sort of inference may be desirable, such as in the use case of intelligent personal assistants. This thesis introduces a neural Bayesian approach to goal inference in multiple symbolic planning domains and compares the results of this approach to the results of a recently developed Monte Carlo Bayesian inference method known as Sequential Inverse Plan Search (SIPS). SIPS is based on sequential Monte Carlo inference for Bayesian inversion of probabilistic plan search in Planning Domain Definition Language (PDDL) domains. In addition to the neural architectures, the thesis also introduces approaches for converting PDDL predicate state representations to numerical arrays and vectors suitable for input to the neural networks. The experimental results presented indicate that for the domains investigated, in cases where the training set is representative of the test set, the neural approach provides similar accuracy results to SIPS in the later portions of the observation sequences with a far shorter amortized time cost. However, in earlier timesteps of those observation sequences and in cases where the training set is less similar to the testing set, SIPS outperforms the neural approach in terms of accuracy. These results indicate that a model-based inference method where SIPS uses a neural proposal based on the neural networks designed in this thesis could have the potential to combine the advantages of both goal inference approaches by improving the speed of SIPS inference while maintaining generalizability and high accuracy throughout the timesteps of the observation sequences.en_US
dc.description.statementofresponsibilityby Jordyn Mann.en_US
dc.format.extent52 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsMIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleNeural Bayesian goal inference for symbolic planning domainsen_US
dc.typeThesisen_US
dc.description.degreeM. Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.identifier.oclc1251800415en_US
dc.description.collectionM.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Scienceen_US
dspace.imported2021-05-24T19:52:22Zen_US
mit.thesis.degreeMasteren_US
mit.thesis.departmentEECSen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record