MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Learning causal graphs under interventions and applications to single-cell biological data analysis

Author(s)
Yang, Karren Dai.
Thumbnail
Download1252627361-MIT.pdf (735.3Kb)
Other Contributors
Massachusetts Institute of Technology. Department of Biological Engineering.
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Caroline Uhler and Douglas A. Lauffenburger.
Terms of use
MIT theses may be protected by copyright. Please reuse MIT thesis content according to the MIT Libraries Permissions Policy, which is available through the URL provided. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis studies the problem of learning causal directed acyclic graphs (DAGs) in the setting where both observational and interventional data is available. This setting is common in biology, where gene regulatory networks can be intervened on using chemical reagents or gene deletions. The identifiability of causal DAGs under perfect interventions, which eliminate dependencies between targeted variables and their direct causes, has previously been studied. This thesis first extends these identifiability results to general interventions, which may modify the dependencies between targeted variables and their causes without eliminating them, by defining and characterizing the interventional Markov equivalence class that can be identified from general interventions. Subsequently, this thesis proposes the first provably consistent algorithm for learning DAGs in this setting. Finally, this algorithm as well as related work is applied to analyze biological datasets.
Description
Thesis: S.M., Massachusetts Institute of Technology, Department of Biological Engineering, February, 2021
 
Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, February, 2021
 
Cataloged from the official PDF version of thesis.
 
Includes bibliographical references (pages 49-51).
 
Date issued
2021
URI
https://hdl.handle.net/1721.1/130806
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Biological Engineering., Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.